Gaussian quadrature in scipy
Scipy has an gaussian quadrature integration built-in in the integrate module as the integrate.quadrature function.
import numpy as np from scipy import integrate
A simple example of quadrature integration can be seen as follows, where we integrate the simple function \(f(x) = 2x\) from limits 0 to 2.
f = lambda x: 2*x print("Quadrature integration:", integrate.quadrature(f, 0, 2)) print("Analytical solution:", 2**2)
A more complex function can also be passed to the quadrature function.
def func(x): return x**2 + 2*x + 3 a = 2 print("Quadrature integration:", integrate.quadrature(func, 0, 2)) print("Analytical solution:", a**3/3 + a**2 + 3*a)
Now, to take into consideration functions that are dependent on more than just the integrating variable.
def func_2(t, z): return z*t + z**2 + 2*t a = 2 z = 2 print("Quadrature integration:", integrate.quadrature(func_2, 0, 2, args=(z,))) print("Analytical solution:", z*a**2/2 + a*z**2 + a**2)
If the function to integrate depends on more variables and even other functions, then we can pass those functions as parameters to the integrating function and solve the quadrature integration.
def func_3(t, z, f1, f2): return f1(t) + z*t + f2(t)**2 f1 = lambda x: x**2 f2 = lambda x: x**3 a, z = 2, 2 print("Quadrature integration:", integrate.quadrature(func_3, 0, 2, args=(z, f1, f2))) print("Analytical solution:", a**3/3 + z*a**2/2 + a**7/7)
Functions with vector output need to provide the vec_func argument as True.
def f(x): # print("x:", x) # print("z:", z) return z*x*2 z = np.array([2, 3]) integrate.quad_vec(f, 0, 2)
For fixed order Gaussian quadrature integration
f = lambda x, a: np.sin(np.kron(a, x)).reshape(-1, x.shape[0]) x = np.array([1,2,3]) a = np.array([1,2]) print(f(x, a).shape)
np.kron(a, x)
:results:
Writing gaussian quadrature integration from scratch using numpy
def norm_pdf(x, mu, sigma): mu, sigma = mu.reshape(-1, 1), sigma.reshape(-1, 1) x = x.reshape(-1, 1) variance = sigma**2 numerator = x - mu denominator = 2 * variance pdf = ((1/(np.sqrt(2 * np.pi) * sigma)) * np.exp(-(numerator**2) / denominator)) return pdf
def h_z(a, b, T_i, x, y, sigma_m2, delta_a, delta_b, indicator, n_time_samples=1000): mc_sum = np.zeros(x.shape) t = rng.uniform(0, T_i, size=n_time_samples) alpha = t/T_i mu_x = a.x + alpha * (b.x - a.x) mu_y = a.y + alpha * (b.y - a.y) sigma = np.sqrt(t * (1 - alpha) * sigma_m2 + (1 - alpha)**2 * (delta_a**2) + (alpha**2) * (delta_b**2)) pdf_x = norm_pdf(x, mu_x, sigma) pdf_y = norm_pdf(y, mu_y, sigma) mc_sum += indicator * pdf_x * pdf_y return mc_sum